Theme: Physics

Abstract No.: PTCOG-AO2025-ABS-0153

Abstract Title: A Comprehensive Solution for Efficient Patient-Specific Quality Assurance in Carbon-Ion Radiotherapy

Author Names: Gahee Son¹, Yongdo Yun², Seok-Ho Lee³, Min Cheol Han^{2*}, Jin Sung Kim², Chan Hyeong Kim¹

¹Department of Nuclear Engineering, Hanyang University, Seoul, Korea

²Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea

³Department of Integrated Medicine, Yonsei University College of Medicine, Seoul, Korea

Aims:

 This study aims to develop a comprehensive platform for patient-specific quality assurance (PSQA) in carbon-ion radiotherapy (CIRT), by integrating measurementbased, log-based, and hybrid PSQA approaches.

Methods:

Architecture of the Comprehensive QA Framework for CIRT

- An overview of the comprehensive QA framework for CIRT is shown in Figure 1.
- Measurement-based method: Uses a 2D detector for absolute dose verification.
- Log-based method: Reconstructs 3D dose from beam parameters (i.e., spot position, monitor units, and nominal energy) in delivery logs (e.g., DICOM-RT Record) using an independent dose calculation algorithm.
- Hybrid method: Calibrates the logreconstructed dose to absolute dose levels using a measured dose.

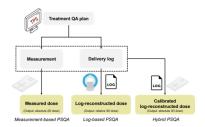


Figure 1. Workflow of the comprehensive PSQA platform.

Implementation and Evaluation of the PSQA Framework

- QA dataset: Five prostate treatment plans
- Measurement depths: Proximal / Central / Distal (within spread-out Bragg peak)
- 3D dose reconstruction: Using delivery logs
- Calibration: Using the absolute dose at the proximal depth
- Dose evaluation: 2D or 3D gamma analysis (2%/2 mm)

Result:

- Figure 2 presents the graphical user interface of the developed PSQA platform for CIRT, featuring dose map visualization, gamma analysis, and profile comparison among planned dose, measured dose, logreconstructed dose, and hybrid dose.
- Across five cases, the measurement-based approach showed the highest agreement with the planned dose (mean 2D/3D γ passing rate: 98.6%), followed by the hybrid (97.7%) and log-based (97.1%) methods. Figure 3 shows an example of dose distributions at the proximal depth obtained using the three PSQA methods.
- Compared with the measured dose, the hybrid methods demonstrated better agreement (mean 2D y passing rate: 99.3%) than the log-based approach (98.5%).

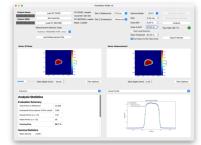


Figure 2. Graphical user interface of the developed PSQA platform for CIRT.

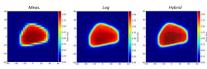


Figure 3. Example of dose distributions at the proximal depth obtained using three PSQA methods.